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Final objective: Gaussian-categorical Diffusion Process
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“The woman is wearing lipstick. 5he has “This man has bags under eyes, receding “The woman has rosy cheeks. She is
blond halr, pointy nose, and oval face.” hairline, and big nose.” smiling. She wears earrings, and lipstick.”

https://pmh9960.github.io/research/GCDP/
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Overview

 Diffusion models is a generative model that synthesizes an image by gradually removing noise
from a random Gaussian noise which has the same size with the image to generate.

Random Noise Generated Image

Denoising Denoising Denoising
Model Model Model



Notation

xo. Clean image with no noise added

xr. Gaussian noise

X1, X9, ..., X7_1. NOISY images

q(xo.r): Joint distribution of xy, x4, ..., xp, i.e., q(xg, X1, ..., XT).
Forward process (diffusion process): q(x;|x;—1)

Reverse process (denoising process): pg(xs_1|x¢)
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Figure 2: The directed graphical model considered in this work.



Assumption

« Forward and Reverse process are both Markov Chain process.
« V' <t—1, qOxlxe_q, %) = qloxelxe_1).

- V' >, Po(xe—1lxe, xp1) = po(xp—1lx¢).
» Forward process is Gaussian distribution pre-defined based on «;.

q(xe|xe—1) = N Qg Jaexe—q1, (1 — ap)l)

a; has been scheduled by pre-defined function.
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Figure 2: The directed graphical model considered in this work.



Deriving the ELBO

- As other MLE-based generative models, diffusion model is also trained to maximize Log-Likelihood
Exy~q(xo) [108 Do (x0) .

 Following the diffusion modeling, pg(x,) is transformed into the form of forward q(x;|x;_;) and
reverse pg(xs_1]xs).

po(xo) = ere (xo.7)dxq.7 Definition of marginal distribution
[ q(x1.7|%0) _ _
= | pg(xq.7) - dx,.7  Multiply the same term to the numerator and the denominator.
J q(xl:Tle)

— ij(xT) ) HZ=1 Pe(xt_llxt)

= - q(x1.7lx9)dxy.c Transform following Markov Chain assumption
t=19(xelxe_1)

. _
po (xr—1lx¢)

o1 q(xelxe—q) |

= By r~q(eprlxg) | Po(xr) - Transform into the form of Expectation

Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015. 8



Deriving the ELBO

 Maximize Log-Likelihood E, ., [logpg(xo)]

Ey,~qllogpe(xo)]

= [1og(pox)) - aCo)dxg

B

- jlog IExl:TNCI(x]_;T|x0) p@(xT) '

= JIExlzT"’Q(xl:Tle) log| pe(xr) -

T
Po(Xe—1lx¢)

1 q(xelxe—1)

T
Do (xe—1lxt)

) q(xelxe—1)

- q(x0)dxg

- q(x9)dxg

Evidence Lower BOund (ELBO)
or Variational bound

Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

Previous slide

Jensen’s inequality
(log is convex)



Training Objective: Utilization of q(x:—_1|x¢, xo)

« Minimize Negative Log-Likelihood by Minimize Negative ELBO

T
po (Xe—1lxt)
—(ELBO) = — | E 1 . e )d
(BLBO) = = [ By g(xy pfxo) | 108 | PoGir) ] e | REREE
T
po (xt—1lxt) R . . .
= Eyyr~q |~ l0ogpo(x7) — ) loOg =L Grouping with Expectation
— q(xe|xe—1)

« We aim to transform ELBO into tractable form of KL Divergence such as VAE.

* Although we define q(x¢|x;_1) and pg(x;_1|x;), we cannot directly use KL Divergence since one is the
distribution of x; and the other is the distribution of x;_;.

Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.
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Training Objective: Utilization of q(x:—_1|x¢, xo)

Goal: Transform pg(x;_1|x;) and q(x;|x;_,) into the form of KL Divergence between pg(x;_,|x;) and

q(xe—1lxe, x0).

 Although we do not know q(x;_|x;), we can calculate q(x;_1|x;, xo) and q(x;|x;_;) using Bayes’
Rule when t > 2.

* Recap) q(xelxe_1) = N (x¢; Txe—1, (1 — ap)I)

Bayes’ Rule Remove x, (Markov Chain assumption)
q(x,_1 1%, %g) = q(xelace—1,%0)q(xe—1]x0) _ q(xelxe—1)q(xe—q1x0) q(xelx0) = N (xe; \[@exo, (1 — @)I)
’ q(xtlxo) C[(xtlxo) where @, = [¢-; a;

2
1 exp | — || — \/a_txt—lnz . 1 exp (_ llxe—1 — V@_1xo|| )
,/1—0&-@ 2(1_at) W’l_dt—l'm 2(1_&1?—1) L. .
= Definition of Gaussian

— 2
1 exp (_ e — Va@xo| ) distribution
J1—a,-V2rm 2(1—ay)

A O ar(1—a._ 1—a;_
—]\/'<xt_1; t 1,th + t( t—1) t—1

— — X —
1_at 0 1_at b 1_at

ﬁﬂ) Form of Gaussian distribution and 8; :=1 — a;

Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015. 11



Turning into the Form of KL Divergence

[ T
A po(xe_1lxt)
L2Ey ~q|—logpg(xr)— ) log Starting from original ELBO
' e q(xelxe—1)
. | () | po(xr_1]|xs) | po(xolx1) Since q(x;_1|x;, xo) is defined when
= w~g | — 108 Do (XT) — Z og — 108 t > 2, the range of t changes into t =
o4 - q(xelxe—1) q(x1[x0) ° ’ 23 ..T

[ T
po(xe—qlxe)  qlxe—1lx0) po(xolx1) :
= E _1-=1o X)) — z log | m—m———— . —1lo Transform into the form of
Xo:7~q gpe( T) £ 5 q(xt_1|xt,x0) q(xt|x0) 5 q(xllxo) q(xe-11xe, Xo)

Desired term

—log

_bo\XT) (x7) po(xe—1lx¢)
log — logpg (xolx1)

CI(XT|x0) Q(xt—llxt: Xo)

= Eyx,.;~q DKL(q(lexO) Il po (xT)) + z DKL(CI(xt—1|Xt» xo) Il Pg (xt—llxt)) — log pg(xlx1)
Ly = Le_q Lo

Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

Rearrangement

Turn each loss term into
the form of KL Divergence
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Interpretation of Training Objective

» The objective function can be split into three parts.

T
L £ [Exogwq DKL((I(xT|X0) Il Po (xT)) + 7 DKL(Q(xt—llxt; xo) |l Do (xt—llxt)) — log pg (xolx1)

t=2
Lt Le—q Lo

« DDPM separately interprets L+, L;_4, and L, and design the model architecture and loss functions.

13



Interpretation of Training Objective: Ly

Ly = DKL(CI(XT|9C0) | Pe(xT))

« By scheduling a;, we can make q(x|x,) always follow NV (0, ).

» Since pg(x7) can also be defined as NV (0,1), we can achieve Ly perfectly as zero.

« = L can be ignored during the training.

14



Interpretation of Training Objective: L;_,

L4 = DKL(CI(xt—1|xt»xo) I p@(xt—llxt))

« Based on the pre-defined a; scheduling, q(x;_1|x;, x) is as follows:

v X-1P¢ a(l—agq) 1—a4
b = (xmx N amw e
t t t

~

o Ut
= q(xe—1lxe, x0) = N (xp—1; flg, 1)

« We model pg(x;_1|x;) as follows:

Po(Xe—1lxe) = N(xt—1i po(xe, t), g (x4, t))
o (x¢, t) = [y Zg(xs,t) = 6y

« Since we already know &;, Zg(x¢, t) == 6+1.
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Reparameterization Tricks

« Denoising model can obtain fi; through the following processes:

V1Pt \/C_X_t(l — A1) 1—a,_4 Xe = \/C_Z_txo + 1 —ace; Whe[e e~N(0,1)
Wl =N g gyt —a—zy Tog x — /1= e,

L— Xo = —
At
1) Directly predict fi; 2) Predict the ground-truth x,
(Reparameterization 1)
Denoising Denoising
Xt,t —_— Model — ﬁt xt,t — Model — X0 _’| C1Xo +C2xt |_> ﬁt
0 0

3) Predict the direction ¢;

Reparameterization 2 L
(Rep ) (Reparameterization 1)

Denoising X _mf
t t-t ~
X, t — Model > €& T —  Xo 4’| C1Xg + CoX¢ I_’ He

0 at

16




Training Process: L;_4

1. Sample an image x, from training data, the degree of noise t from 0 to 1000, and noise € from
N(0,1), respectively.

2. Synthesize noisy image x; using the sampled x,, t, and e,
based on x, = \/@,x, + /1 — @€,

3. Given x; and t as input, the denoising model 8 and predict the added noise .

4. Train the denoising model 8 based on the pre-defined loss function using the difference between
the predicted €4 (x;, t) and the real added noise .

3) Forward model

1) Sample Denoising 4) Calculate Ioss
Xo, L, € > x; x,t — Model F— ep(x;t) —> Lo = xoe[ -z ”E—Eg(xt, )l ]
2) Noising 0 /

Xt =+/Aexg +4/1 — e Simplified objective function

17



Interpretation of Training Objective: L,

Ly = IExogwq[_ log pg(xolxy)]
« Given x; and t as inputs, the model is trained to maximize likelihood pg(xy|x;) to make the
predicted x, close to the real x,.

 Since the real x, consists of integers in {0, 1,...,255}, which are then normalized between -1 and 1,
we compute the likelihood of such a discrete variable.

1 2 I
po(Xo|x1) H/ N (x; py(x1,1),07) dx :
O (IO) i Pe(xo|x1)
00 ifr=1 — 00 ifr=—1 :
6_|_(£U) — { . 6—($) — { 1 . ' B
£C—|—255 ifr<l1 T — 5e= ifx>—1 e 1)

18



Summary: Training and Sampling

» Unlike the training procedure, inference cannot be performed in a single step.

« At inference time, we first sample an image of the pure Gaussian noise and gradually denoise it (similar to

the inference of autoregressive models).

peXt1|Xt
(D) — - H@ @% H

S --"

Figure 2: The directed graphical model considered in this work.

Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: xr ~N(0,1)
21 %o ~ q(x0) 2: fort =T,...,1do
f’l- t~ %1(1301“11;1({17 .o ) 3.z~ N(0,1)ift >1,clscz =0
. €~ : .
5: Take gradient descent step on 4oxe1 = v%t (Xt - \/lﬁeﬁ’(xt:t)) + 0tz
Vo ||€—€9(\/C_}ft)(0—|—\/1 —C_lfte,t)H2 5: end for
6: until converged 6: return xo

19



Quantitative/Qualitative Results

« Adiffusion model achieves a better or comparable performance compared to the existing GAN-
based approaches.

Table 1: CIFARI10 results. NLL measured in bits/dim.

Model IS FID NLL Test (Train)
Conditional

EBM [11] 8.30 37.9

JEM [17] 8.76 38.4

BigGAN [3] 9.22 14.73

StyleGAN2 + ADA (v1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53] < 5.40
Gated PixelCNN [59] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [43] 5.29 49.46

EBM [11] 6.78 38.2

NCSNvV2 [56] 31.75

NCSN [55] 8.871+0.12 25.32

SNGAN [39] 8.2240.05 21.7

SNGAN-DDLS [4] 9.09£0.10 15.42

StyleGAN2 + ADA (v1) [29] 9.74 £+ 0.05 3.26

Ours (L, fixed isotropic X) 7.67+0.13 13.51 < 3.70 (3.69)
Ours (Lsimple) 9.46+0.11 3.17 < 3.75(3.72)

Figure 4: LSUN Bedroom samples. FID=4.90
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Categorical Diffusion Process

Argmax Flows and Multinomial Diffusion:
Learning Categorical Distributions

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forre, Max Welling
University of Amsterdam
NeurlPS 2021
Presented by Minho Park
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Categorical Diffusion Process

» They define the multinomial diffusion process (categorical diffusion process) using a categorical
distribution that has a 8; chance of resampling a category uniformly.

o q(x¢lxi—1) =C(xe; (1 — Br)xe—q + B:/K) Forward process of categorical diffusion process

= zaels) () ep nﬂ

plxole:)

22



Recap the Objective Function

» Objective function of the diffusion process is

T
L£Ey  ~q DKL(CI(XT|XO) Il po (XT)) + Z DKL(C[(xt—llxt' xo) Il Pg (xt—llxt)) — logpg(xolx1) |-
t=2

« We do not incorporate Gaussian properties when formulating the objective function.

« We also need q(x;_1|x;, xo) for training the categorical diffusion process.



Categorical posterior q(x;—q1|x¢, xg)

» Forward process: q(x;|x;—1) = C(xs; (1 — Be)xi—q + B/ K)
» Express the probability of any x;, directly: q(x;|x,) = C(x¢; dpxo + (1 — a;)/K)

* Then, the categorical posterior can be computed in closed-form:

q(xe—1lxe, x0) = COxpg; Z[(1 — B)xe + B /KIO[@_1x0 + (1 — @,—1) /K])

=C (Xt_p' @post(xt’ XO))

» Detailed proofs for each step are provided in A.1.1 in our paper.

Park et al. "Learning to Generate Semantic Layouts for Higher Text-Image Correspondence in Text-to-Image Synthesis." ICCV. 2023.
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Training Objective

» Since the categorical denoising model can be defined as we reparametrize the denoising model to
predict the ground-truth x,

po(xe—1lx;) = C(xt—1; 99(351:)),
=C (xt—li G)post(xt» Xo(xe, t; 9)))

« The KL divergence loss between q(x;_|x;, xo) and pg(x;_1|x;) can be represented as KL
divergence loss between two PMF.

DKL(CI(xt—1|xt» x0) Il pg (xt—llxt)) = Dgy ((")post(xt:xo) | @post(xt: Xo (X, t; 9)))

2) Predict the ground-truth x,

Denoising
Xe, & —> Model — > Xp _’| G)post I_' Gpost(xt:xo)
0

25




Quantitative/Qualitative Results

* The experiments have been conducted on language modelling tasks and learning image
segmentation maps unconditionally.

Table 3: Comparison of different methods on text8 and enwik8. Results are reported in negative

text8 log-likelihood with units bits per character (bpc) for text8 and bits per raw byte (bpb) for enwik8.

Model type Model text8 (bpc) enwik8 (bpb)

that the role of tellings not be required also action characters passe 64 Layer Transformer (Al-Rfou et al., 2019) 1.13 1.06

d on constitution ahmad a nobilitis first be closest to the cope and dh ARM TransformerXL (Dai et al., 2019) 1.08 0.99

ur and nophosons she criticized itm specifically on august one three mo

vement and a renouncing local party of exte AF/AF* (AR) (Ziegler and Rush, 2019) 1.62 1.72
VAE IAF / SCF* (Ziegler and Rush, 2019) 1.88 2.03

nt is in this meant the replicat today through the understanding elemen CategoricalNF (AR) (Lippe and Gavves, 2020) 1.45 -

t thinks the sometimes seven five his final form of contair you are lot

ur and me es to ultimately this work on the future all all machine the Generative Flow Argmax Flow, AR (ours) 139 1.42

: . Argmax Coupling Flow (ours) 1.82 1.93

silon words thereis greatly usaged up not t
Diffusion Multinomial Text Diffusion (ours) 1.72 1.75

* Results obtained by running code from the official repository for the text8 and enwik8 datasets.

Cityscapes

Table 4: Performance of different dequantization
methods on squares and cityscapes dataset, in bits
per pixel, lower is better.

Cityscapes ELBO IWBO

Round / Unif. (Uria et al., 2013) 1.010 0.930
Round / Var. (Ho et al., 2019) 0.334 0.315

Argmax / Softplus thres. (ours)  0.303 0.290
Argmax / Gumbel dist. (ours) 0.365 0.341
Argmax / Gumbel thres. (ours) 0.307 0.287

Multinomial Diffusion (ours) 0.305
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Variation of the corruption

» Discrete Denoising Diffusion Probabilistic Models: generalize the multinomial diffusion model by
going beyond corruption processes with uniform transition probabilities.

* They propose and compare the 1) uniform, 2) absorbing, 3) discretized Gaussian, and 4) Token
embedding distance transition.

uniform (t=T/2) Gaussian (t=T/2) absorbing (t=T/2)

q(x|xy_1) ay T=0 The great b fox hopped over the lazy
(forward process) T =10 Tt X [MASK] f ped over [MASK]
T = 20 Tt M ] [M ] shi ", (M ] y tl
T = 25 [MASK] ASK [MASK] SK] MA [1 K] MASK MASK [MASK
77777777777777777777777777777777777777777777777777777777777777777777777777777 b) T =20 Th JY br 1 fox hopped over the lazy dog.
T =10 The vast black fox hopping over the lazy cat.
) ( } ) T = 20 Th st tripped this jumping upon walked organizations.
SRt T = 25 Bu scamper tripped this Sanchez walked organizations.

(reverse process)

generated at t=0 t=T/4

Austin et al. "Structured denoising diffusion models in discrete state-spaces." NeurlPS. 2021. 27



Gaussian-Categorical Diffusion Process

Learning to Generate Semantic Layouts
for Higher Text-Image Correspondence
In Text-to-Image Synthesis

Minho Park*, Jooyeol Yun*, Seunghwan Chol, Jaegul Choo
KAIST
ICCV 2023
Presented by Minho Park



Overview

» We propose Gaussian-categorical diffusion process for higher text-image correspondence in text-to-image synthesis.

“The woman is wearing lipstick. She has "This man has bags under eyes, receding “The woman has rosy cheeks. She is
blond halr, pointy nose, and oval face.” hairline, and big nose.” smiling. She wears earrings, and lipstick.”

https://pmh9960.github.io/research/GCDP/ 29
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Gaussian-categorical diffusion process

« Gaussian-categorical diffusion process: jointly modeling the images (continuous and ordinal) and
labels (discrete and categorical) for generating semantic segmentation datasets.

po(Z¢—1lz¢)

q(z¢|Ze—1)

Image

Label

30



Gaussian-categorical diffusion process

» Gaussian-categorical distribution

M
_N _1 1 _
(X,Y) ~ NC(x,y; 1, %,0) = (H@i,yi)-@w) 2 |3, 72 exp(—i(x—uy)TEyl(x—uy))
i=1
=C(y; © x|ly) = N(x; uy, X
X = [Xy, Xy, ., Xy] € RV P(y) (v:6) p(xly) ( Hy Y)
Y = [Yl;YZJ---:YM] € {1,2, ...,K}M c RM = IRSXJ.’V7 N= RSXNXN’ O c RMXK

For example, N = (# of pixels) X 3 and M = (# of pixels) _ _ _
S = KM, possible number of the categorical variable

P(X,Y)

Visualization of a Gaussian-categorical distribution
with a single variable (N = 1,M = 1,K = 4)
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Gaussian-categorical diffusion process

» We define the forward process of image-layout pairs under the Markov chain assumption as

Independent noise with the categorical variable.

q(z¢|2¢—1) = NC<Zt; [Mt|t—1] % G [2t|t—1} 2 |@t|t—1 3

Independent noise with the Gaussian variable.

Hijt—1 = / 1 — B¥x¢_1,

2t|t—1 = /B£/I7
Oy—1 = (1 = BY)ye—1 + B /K,

where (3¢ and 3V are predefined noise schedules. We use the
notation [v]y g to indicate row-wise duplication of a vector
v (ie., [v,v,..,v]D).

We derive the following objective. Detailed proof for each step are provided in Appendix A.1 of the paper.

]_ N N —~
Dyr(q(zi—1|2¢,20) || po (Ze—1 | 2¢)) =|E, oy |72: — fro(ze)||* || +|DkL(©; || ©g(z:))|+ C,
t

Objective of the Gaussian Categorical diffusion process
32



Generating image-layout pairs

» The proposed diffusion process effectively generate the image-layout pairs.

Generated
Image-Layout

i
“The woman is wearing lipstick. She has

“This man has bags under eyes, receding
blond hair, pointy nose, and oval face.”

hairline, and big nose.”

“The woman has rosy cheeks. She is

Input Text smiling. She wears earrings, and lipstick.”

-
al

Generated
Image-Layout

“An image of an urban street view with Cars,
Sidewalks, Bicycles, Skies, Roads, Traffic signs,
Vegetations, Buildings, Poles and Riders.”

“An image of an urban street view with People,
Skies, Roads, Buildings, Vegetations, Cars, Poles,
Sidewalks, Traffic lights, and Traffic signs.”

“An image of an urban street view with Walls, Poles,
Sidewalks, Terrains, Vegetations, Traffic signs, Cars,
Skies, Roads, Buildings, Fences, and Traffic lights.”

Input Text

Methods FID | mloU 1 FSD |
GANformer [20] 24.86 - 481.5
DatasetDDPM [ 3] 55.38 33.88 90.31
Semantic Palette [22] 52.13 53.17 48.29
Ours 20.36 65.80 42.22

Table 1. Image-layout alignment and FID of different Image-
layout generation approaches for scene generation in the
Cityscapes [%] dataset.
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Additional advantage of joint generative models

» Text-guided cross-modal outpainting with the joint diffusion model.

« Since we model the joint distribution p(x, y), we can derive the conditional distribution i.e., p(x|y) or p(y|x).

Input Text Image Ground Truth

Prediction

“She has pointy
nose, and arched
eyebrows. She is

attractive and is
wearing lipstick.”

“This person is
young, and
attractive and has
mustache, bags
under eyes, and
sideburns.”

(a) Text-guided Image-to-Layout Generation

Input Text

“She has wavy hair,
arched eyebrows
and wears lipstick.
She is young.”

“This man has
straight hair,
mustache, and
bushy eyebrows.”

Semantic Layout

Synthesized Images

\

(b) Text-guided Layout-to-lmage Generation
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