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Final objective: Gaussian-categorical Diffusion Process
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Overview

• Diffusion models is a generative model that synthesizes an image by gradually removing noise 

from a random Gaussian noise which has the same size with the image to generate.
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Notation

• 𝑥0: Clean image with no noise added

• 𝑥𝑇: Gaussian noise

• 𝑥1, 𝑥2, … , 𝑥𝑇−1: Noisy images

• 𝑞 𝑥0:𝑇 : Joint distribution of 𝑥0, 𝑥1, … , 𝑥𝑇, i.e., 𝑞 𝑥0, 𝑥1, … , 𝑥𝑇 .

• Forward process (diffusion process): 𝑞 𝑥𝑡|𝑥𝑡−1

• Reverse process (denoising process): 𝑝𝜃 𝑥𝑡−1|𝑥𝑡
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Assumption

• Forward and Reverse process are both Markov Chain process.

• ∀𝑡′ < 𝑡 − 1, 𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥𝑡′ = 𝑞 𝑥𝑡 𝑥𝑡−1 .

• ∀𝑡′ > 𝑡, 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 , 𝑥𝑡′ = 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 .

• Forward process is Gaussian distribution pre-defined based on 𝛼𝑡.

𝑞 𝑥𝑡|𝑥𝑡−1 ≔𝒩 𝑥𝑡; 𝛼𝑡𝑥𝑡−1, 1 − 𝛼𝑡 𝐼
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𝛼𝑡 has been scheduled by pre-defined function.



Deriving the ELBO

• As other MLE-based generative models, diffusion model is also trained to maximize Log-Likelihood 

𝔼𝑥0~𝑞 𝑥0 log 𝑝𝜃 𝑥0 .

• Following the diffusion modeling, 𝑝𝜃 𝑥0 is transformed into the form of forward 𝑞 𝑥𝑡 𝑥𝑡−1 and 

reverse 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 .

8Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

𝑝𝜃 𝑥0 = න𝑝𝜃 𝑥0:𝑇 𝑑𝑥1:𝑇

= න𝑝𝜃 𝑥0:𝑇 ⋅
𝑞 𝑥1:𝑇 𝑥0
𝑞 𝑥1:𝑇 𝑥0

𝑑𝑥1:𝑇

= න𝑝𝜃 𝑥𝑇 ⋅
ς𝑡=1
𝑇 𝑝𝜃 𝑥𝑡−1 𝑥𝑡
ς𝑡=1
𝑇 𝑞 𝑥𝑡 𝑥𝑡−1

⋅ 𝑞 𝑥1:𝑇 𝑥0 𝑑𝑥1:𝑇

= 𝔼𝑥1:𝑇~𝑞 𝑥1:𝑇 𝑥0 𝑝𝜃 𝑥𝑇 ⋅ෑ

𝑡=1

𝑇
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

Definition of marginal distribution

Multiply the same term to the numerator and the denominator.

Transform following Markov Chain assumption

Transform into the form of Expectation



Deriving the ELBO

• Maximize Log-Likelihood 𝔼𝑥0~𝑞 log 𝑝𝜃 𝑥0

9Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

Evidence Lower BOund (ELBO)

or Variational bound

Previous slide

𝔼𝑥0~𝑞 log 𝑝𝜃 𝑥0

= නlog 𝑝𝜃 𝑥0 ⋅ 𝑞 𝑥0 𝑑𝑥0

= න log 𝔼𝑥1:𝑇~𝑞 𝑥1:𝑇 𝑥0 𝑝𝜃 𝑥𝑇 ⋅ෑ

𝑡=1

𝑇
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

⋅ 𝑞 𝑥0 𝑑𝑥0

≥ න𝔼𝑥1:𝑇~𝑞 𝑥1:𝑇 𝑥0 log 𝑝𝜃 𝑥𝑇 ⋅ෑ

𝑡=1

𝑇
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

⋅ 𝑞 𝑥0 𝑑𝑥0
Jensen’s inequality 

(log is convex)



Training Objective: Utilization of 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0
• Minimize Negative Log-Likelihood by Minimize Negative ELBO

• We aim to transform ELBO into tractable form of KL Divergence such as VAE.

• Although we define 𝑞 𝑥𝑡 𝑥𝑡−1 and 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 , we cannot directly use KL Divergence since one is the 

distribution of 𝑥𝑡 and the other is the distribution of 𝑥𝑡−1.

10Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

− 𝐄𝐋𝐁𝐎 = −න𝔼𝑥1:𝑇~𝑞 𝑥1:𝑇 𝑥0 log 𝑝𝜃 𝑥𝑇 ⋅ෑ

𝑡=1

𝑇
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

⋅ 𝑞 𝑥0 𝑑𝑥0

= 𝔼𝑥0:𝑇~𝑞 − log𝑝𝜃 𝑥𝑇 −෍

𝑡=1

𝑇

log
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

≜ 𝐿 Grouping with Expectation



Training Objective: Utilization of 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0
Goal: Transform 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 and 𝑞 𝑥𝑡 𝑥𝑡−1 into the form of KL Divergence between 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 and

𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 .

• Although we do not know 𝑞 𝑥𝑡−1 𝑥𝑡 , we can calculate 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 and 𝑞 𝑥𝑡 𝑥𝑡−1 using Bayes’ 

Rule when 𝑡 ≥ 2.

• Recap) 𝑞 𝑥𝑡 𝑥𝑡−1 ≔𝒩 𝑥𝑡; 𝛼𝑡𝑥𝑡−1, 1 − 𝛼𝑡 𝐼

11Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞 𝑥𝑡−1 𝑥0

𝑞 𝑥𝑡 𝑥0
=
𝑞 𝑥𝑡 𝑥𝑡−1 𝑞 𝑥𝑡−1 𝑥0

𝑞 𝑥𝑡 𝑥0

=

1

1 − 𝛼𝑡 ⋅ 2𝜋
exp −

𝑥𝑡 − 𝛼𝑡𝑥𝑡−1
2

2 1 − 𝛼𝑡
⋅

1

1 − ത𝛼𝑡−1 ⋅ 2𝜋
exp −

𝑥𝑡−1 − ത𝛼𝑡−1𝑥0
2

2 1 − ത𝛼𝑡−1

1

1 − ത𝛼𝑡 ⋅ 2𝜋
exp −

𝑥𝑡 − ത𝛼𝑡𝑥0
2

2 1 − ത𝛼𝑡

= 𝒩 𝑥𝑡−1;
ത𝛼𝑡−1𝛽𝑡
1 − ത𝛼𝑡

𝑥0 +
ത𝛼𝑡 1 − ത𝛼𝑡−1
1 − ത𝛼𝑡

𝑥𝑡,
1 − ത𝛼𝑡−1
1 − ത𝛼𝑡

𝛽𝑡𝐼

Remove 𝑥0 (Markov Chain assumption)Bayes’ Rule

Definition of Gaussian 

distribution

Form of Gaussian distribution and 𝛽𝑡 ≔ 1 − 𝛼𝑡

𝑞 𝑥𝑡 𝑥0 = 𝒩 𝑥𝑡; ത𝛼𝑡𝑥0, 1 − ത𝛼𝑡 𝐼

where ത𝛼𝑡 ≜ ς𝑠=1
𝑡 𝛼𝑡



Turning into the Form of KL Divergence

12Sohl-Dickstein et al. "Deep unsupervised learning using nonequilibrium thermodynamics." ICML. 2015.

𝐿 ≜ 𝔼𝑥0:𝑇~𝑞 − log 𝑝𝜃 𝑥𝑇 −෍

𝑡=1

𝑇

log
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

= 𝔼𝑥0:𝑇~𝑞 − log 𝑝𝜃 𝑥𝑇 −෍

𝑡=2

𝑇

log
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡 𝑥𝑡−1

− log
𝑝𝜃 𝑥0 𝑥1
𝑞 𝑥1 𝑥0

= 𝔼𝑥0:𝑇~𝑞 − log 𝑝𝜃 𝑥𝑇 −෍

𝑡=2

𝑇

log
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

⋅
𝑞 𝑥𝑡−1 𝑥0
𝑞 𝑥𝑡 𝑥0

− log
𝑝𝜃 𝑥0 𝑥1
𝑞 𝑥1 𝑥0

= 𝔼𝑥0:𝑇~𝑞 − log
𝑝𝜃 𝑥𝑇
𝑞 𝑥𝑇 𝑥0

−෍

𝑡=2

𝑇

log
𝑝𝜃 𝑥𝑡−1 𝑥𝑡
𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

− log𝑝𝜃 𝑥0 𝑥1

= 𝔼𝑥0:𝑇~𝑞 𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 ∥ 𝑝𝜃 𝑥𝑇 +෍

𝑡=2

𝑇

𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 ∥ 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 − log𝑝𝜃 𝑥0 𝑥1

Since 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 is defined when

𝑡 ≥ 2, the range of 𝑡 changes into 𝑡 =
2,3,… , 𝑇

𝐿𝑇 𝐿𝑡−1 𝐿0

Desired term

Transform into the form of 

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0

Rearrangement

Starting from original ELBO

Turn each loss term into 

the form of KL Divergence



Interpretation of Training Objective

• The objective function can be split into three parts.

• DDPM separately interprets 𝐿𝑇 , 𝐿𝑡−1, and 𝐿0 and design the model architecture and loss functions.

13

𝐿 ≜ 𝔼𝑥0:𝑇~𝑞 𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 ∥ 𝑝𝜃 𝑥𝑇 +෍

𝑡=2

𝑇

𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 ∥ 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 − log 𝑝𝜃 𝑥0 𝑥1

𝐿𝑇 𝐿𝑡−1 𝐿0



Interpretation of Training Objective: 𝐿𝑇

𝐿𝑇 = 𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 ∥ 𝑝𝜃 𝑥𝑇

• By scheduling 𝛼𝑡, we can make 𝑞 𝑥𝑇 𝑥0 always follow 𝒩 0, 𝐼 .

• Since 𝑝𝜃 𝑥𝑇 can also be defined as 𝒩 0, 𝐼 , we can achieve 𝐿𝑇 perfectly as zero. 

• ⇒ 𝐿𝑇 can be ignored during the training.

14



Interpretation of Training Objective: 𝐿𝑡−1

𝐿𝑡−1 = 𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 ∥ 𝑝𝜃 𝑥𝑡−1 𝑥𝑡

• Based on the pre-defined 𝛼𝑡 scheduling, 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 is as follows: 

𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 = 𝒩 𝑥𝑡−1;
ത𝛼𝑡−1𝛽𝑡
1 − ത𝛼𝑡

𝑥0 +
ത𝛼𝑡 1 − ത𝛼𝑡−1
1 − ത𝛼𝑡

𝑥𝑡,
1 − ത𝛼𝑡−1
1 − ത𝛼𝑡

𝛽𝑡𝐼

• We model 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 as follows:

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝒩 𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ𝜃 𝑥𝑡, 𝑡

15

෤𝜇𝑡 ෤𝜎𝑡
⇒ 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 = 𝒩 𝑥𝑡−1; ෤𝜇𝑡, ෤𝜎𝑡𝐼

𝜇𝜃 𝑥𝑡, 𝑡 → ෤𝜇𝑡 Σ𝜃 𝑥𝑡, 𝑡 → ෤𝜎𝑡

• Since we already know ෤𝜎𝑡, Σ𝜃 𝑥𝑡, 𝑡 ≔ ෤𝜎𝑡𝐼.



Reparameterization Tricks

• Denoising model can obtain ෤𝜇𝑡 through the following processes:

16

Denoising

Model

𝜃

𝑥𝑡, 𝑡 ෤𝜇𝑡

1) Directly predict ෤𝜇𝑡

Denoising

Model

𝜃

𝑥𝑡, 𝑡 𝑥0

2) Predict the ground-truth 𝑥0

𝑐1𝑥0 + 𝑐2𝑥𝑡 ෤𝜇𝑡

(Reparameterization 1)

𝑥0 𝑐1𝑥0 + 𝑐2𝑥𝑡 ෤𝜇𝑡

(Reparameterization 1)

Denoising

Model

𝜃

𝑥𝑡, 𝑡 𝜖𝑡

3) Predict the direction 𝜖𝑡

𝑥𝑡 − 1 − ത𝛼𝑡𝜖𝑡

ത𝛼𝑡

(Reparameterization 2)

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖𝑡 where 𝜖𝑡~𝒩 0, 𝐼

⇔ 𝑥0 =
𝑥𝑡 − 1 − ത𝛼𝑡𝜖𝑡

ത𝛼𝑡

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1;
ത𝛼𝑡−1𝛽𝑡

1 − ത𝛼𝑡
𝑥0 +

ത𝛼𝑡 1 − ത𝛼𝑡−1

1 − ത𝛼𝑡
𝑥𝑡 ,

1 − ത𝛼𝑡−1
1 − ത𝛼𝑡

𝛽𝑡𝐼



Training Process: 𝐿𝑡−1
1. Sample an image 𝑥0 from training data, the degree of noise 𝑡 from 0 to 1000, and noise 𝜖 from

𝒩 0, 𝐼 , respectively.

2. Synthesize noisy image 𝑥𝑡 using the sampled 𝑥0, 𝑡, and 𝜖, 

based on 𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖𝑡

3. Given 𝑥𝑡 and 𝑡 as input, the denoising model 𝜃 and predict the added noise 𝜖.

4. Train the denoising model 𝜃 based on the pre-defined loss function using the difference between 

the predicted 𝜖𝜃 𝑥𝑡, 𝑡 and the real added noise 𝜖.

17

Denoising

Model

𝜃

𝑥𝑡, 𝑡 𝜖𝜃 𝑥𝑡, 𝑡 𝐿𝑡−1 = 𝔼𝑥0,𝜖
𝛽𝑡
2

2𝜎𝑡
2𝛼𝑡 1 − ത𝛼𝑡

𝜖 − 𝜖𝜃 𝑥𝑡, 𝑡
2

4) Calculate loss

𝑥𝑡𝑥0, 𝑡, 𝜖

3) Forward model

1) Sample

2) Noising

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖 Simplified objective function



Interpretation of Training Objective: 𝐿0
𝐿0 = 𝔼𝑥0:𝑇~𝑞 − log𝑝𝜃 𝑥0 𝑥1

• Given 𝑥1 and 𝑡 as inputs, the model is trained to maximize likelihood 𝑝𝜃 𝑥0 𝑥1 to make the 

predicted 𝑥0 close to the real 𝑥0.

• Since the real 𝑥0 consists of integers in 0, 1, . . . , 255 , which are then normalized between -1 and 1, 

we compute the likelihood of such a discrete variable. 

18

𝜇𝜃 𝑥1, 1

𝑥0

𝑝𝜃 𝑥0 𝑥1



Summary: Training and Sampling

• Unlike the training procedure, inference cannot be performed in a single step.

• At inference time, we first sample an image of the pure Gaussian noise and gradually denoise it (similar to 

the inference of autoregressive models). 

19



Quantitative/Qualitative Results

• A diffusion model achieves a better or comparable performance compared to the existing GAN-

based approaches.

20



Categorical Diffusion Process

Argmax Flows and Multinomial Diffusion: 
Learning Categorical Distributions

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, Max Welling

University of Amsterdam

NeurIPS 2021

Presented by Minho Park
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Categorical Diffusion Process

• They define the multinomial diffusion process (categorical diffusion process) using a categorical 

distribution that has a 𝛽𝑡 chance of resampling a category uniformly.

• 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒞 𝑥𝑡; 1 − 𝛽𝑡 𝑥𝑡−1 + 𝛽𝑡/𝐾

22

Forward process of categorical diffusion process



Recap the Objective Function

• Objective function of the diffusion process is

𝐿 ≜ 𝔼𝑥0:𝑇~𝑞 𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 ∥ 𝑝𝜃 𝑥𝑇 +෍

𝑡=2

𝑇

𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 ∥ 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 − log𝑝𝜃 𝑥0 𝑥1 .

• We do not incorporate Gaussian properties when formulating the objective function.

• We also need 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 for training the categorical diffusion process.

23



Categorical posterior 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0
• Forward process: 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒞 𝑥𝑡; 1 − 𝛽𝑡 𝑥𝑡−1 + 𝛽𝑡/𝐾

• Express the probability of any 𝑥𝑡 directly: 𝑞 𝑥𝑡 𝑥0 = 𝒞 𝑥𝑡; ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡 /𝐾

• Then, the categorical posterior can be computed in closed-form:

• Detailed proofs for each step are provided in A.1.1 in our paper.

24Park et al. "Learning to Generate Semantic Layouts for Higher Text-Image Correspondence in Text-to-Image Synthesis." ICCV. 2023.

𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 = 𝒞 𝑥𝑡−1; 𝑍 1 − 𝛽𝑡 𝑥𝑡 + 𝛽𝑡/𝐾 ⨀ ത𝛼𝑡−1𝑥0 + 1 − ത𝛼𝑡−1 /𝐾

= 𝒞 𝑥𝑡−1; Θpost 𝑥𝑡, 𝑥0



Training Objective

• Since the categorical denoising model can be defined as we reparametrize the denoising model to 

predict the ground-truth 𝑥0

• The KL divergence loss between 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 and 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 can be represented as KL 

divergence loss between two PMF.
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Denoising

Model

𝜃

𝑥𝑡, 𝑡 𝑥0

2) Predict the ground-truth 𝑥0

Θpost Θpost 𝑥𝑡, 𝑥0

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝒞 𝑥𝑡−1; Θ𝜃 𝑥𝑡 ,

= 𝒞 𝑥𝑡−1; Θpost 𝑥𝑡, ො𝑥0 𝑥𝑡, 𝑡; 𝜃

𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 ∥ 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝐷𝐾𝐿 Θpost 𝑥𝑡, 𝑥0 ∥ Θpost 𝑥𝑡, ො𝑥0 𝑥𝑡, 𝑡; 𝜃



Quantitative/Qualitative Results

• The experiments have been conducted on language modelling tasks and learning image 

segmentation maps unconditionally. 
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Variation of the corruption

• Discrete Denoising Diffusion Probabilistic Models: generalize the multinomial diffusion model by 

going beyond corruption processes with uniform transition probabilities.

• They propose and compare the 1) uniform, 2) absorbing, 3) discretized Gaussian, and 4) Token 

embedding distance transition.

27Austin et al. "Structured denoising diffusion models in discrete state-spaces." NeurIPS. 2021.
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Overview

• We propose Gaussian-categorical diffusion process for higher text-image correspondence in text-to-image synthesis.

29https://pmh9960.github.io/research/GCDP/

https://pmh9960.github.io/research/GCDP/


Gaussian-categorical diffusion process

• Gaussian-categorical diffusion process: jointly modeling the images (continuous and ordinal) and 

labels (discrete and categorical) for generating semantic segmentation datasets.
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Gaussian-categorical diffusion process

• Gaussian-categorical distribution
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𝑝 𝐲 = 𝒞 𝐲;𝚯 𝑝 𝐱|𝐲 = 𝒩 𝐱; 𝝁𝐲, 𝚺𝐲

Visualization of a Gaussian-categorical distribution 

with a single variable 𝑁 = 1,𝑀 = 1,𝐾 = 4

𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑁 ∈ ℝ𝑁

𝑌 = 𝑌1, 𝑌2, … , 𝑌𝑀 ∈ 1,2,… , 𝐾 𝑀 ⊂ ℝ𝑀

For example, 𝑁 = # of pixels × 3 and 𝑀 = # of pixels
𝑆 = 𝐾𝑀, possible number of the categorical variable



Gaussian-categorical diffusion process

• We define the forward process of image-layout pairs under the Markov chain assumption as

32

Independent noise with the categorical variable.

We derive the following objective. Detailed proof for each step are provided in Appendix A.1 of the paper.

Gaussian CategoricalObjective of the diffusion process

Independent noise with the Gaussian variable.



Generating image-layout pairs

• The proposed diffusion process effectively generate the image-layout pairs.
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Additional advantage of joint generative models

• Text-guided cross-modal outpainting with the joint diffusion model.

• Since we model the joint distribution 𝑝 𝑥, 𝑦 , we can derive the conditional distribution i.e., 𝑝 𝑥 𝑦 or 𝑝 𝑦 𝑥 .
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Thank You

Q&A
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