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Diffusion Models and Score-based Models

« Score function: the gradient of the logarithm of the probability density function, i.e., V, logp(x).

» Diffusion models: Latent variable models where latent variables are combined with a Markov chain.

« The transitions of latent variables are defined as a conditional Gaussian distribution and starting at isotropic
Gaussian distribution.

Data samples

ii.d.

{x1,x2, -+, xn} ~ p(x)
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Scores

s9(x) ~ Vi logp(x)

Score-based Models (NCSN)
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Flgure 2: The directed graphical model considered in this work.
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Diffusion models [53] are latent variable models of the form py(xq) = [ po(x0.7) dx1.7, where
X1,..., x7 are latents of the same dimensionality as the data xg ~ q(x¢). The joint distribution
po(Xo.r) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xr) = N (xr; 0, I):
T
ps(Xo:T) = p(XT) HPB (Xt—1|xt)~
t=1

po(xi—1/xe) = N(x—1: pg(xe, 1), Bo(xe, 1) (1)

Diffusion Models (DDPM)

Song, Yang, and Stefano Ermon. "Generative modeling by estimating gradients of the data distribution." NeurlPS. 2019.

Sohl-Dickstein, Jascha, et al. Deep unsupervised learning using nonequilibrium thermodynamics. ICML. 2015,



Reparameterize Diffusion Models

» Objective of diffusion models:

E, | Dxr.(g(x7[x0) | p(xr)) + Y | Dxcr(q(%e—1/%¢,%0) | po(xs-1]x+)) —log pa(xolx1)
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« We model pg(x;_q1]x;) In q(x:—1|x¢, x¢) form (Gaussian distribution).
« Predict x, with x;. l.e., Xy(x;, t;0) = q(xs—1]x:, Xo).

q(xt—1|x¢t,%0) = N(Xt—l;ﬁt(XhXO)wétI):
NG Jor(l — ay ~ 1 — ay_
R ‘ éﬁtxwr L~ a 1)Xt and = ———13,
—

1 —ay 1 —ay

where 1, (X¢,Xq) ==

* Reparameterize x,
* X =./0xg ++/1— a,e where e~N(0,1).

— Our new target!
~ Xe—/1—a¢leg(x¢,t . . .
« Xp = L tleo(Xet) Is this similar to score function?
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DDPM (SDE) vs. DDIM (ODE)

 Diffusion models also can be seem as stochastic differential equation.

Data Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw 4)@— dz = [f(z,t) — ¢*(t) V. log pi (z)] dt + g(t)dw
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score V log p;(x) (Section 3.3).

Song, Yang, et al. "Score-Based Generative Modeling through Stochastic Differential Equations.” ICLR. 2021.



Consistency Models

- Given a solution trajectory {x;};c[c ] of PF ODE (DDIM)

 Self-consistency: f(x;, t) = f(x,.,t") forall t,t" € [¢,T].

« Boundary condition: f(x.,¢€) = x., i.e., f(:, €) is an identity function.

Data Noise Data Noise
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Figure 1: Given a that smoothly
converts data to noise, we learn to map any point (e.g., X;,
x4, and x7) on the ODE trajectory to its origin (e.g., Xq)

for generative modeling. Models of these mappings are ) : ) .
called consistency models, as their outputs are trained to be Figure 2: Consistency models are trained to map points on

consistent for points on the same trajectory. any trajectory of the to the trajectory’s origin.




Implement Boundary Condition Almost For Free

« Two simple parameterization tricks: Fo(x,t) is a free-form deep neural network.

1. Naive parameterization

X t=¢€

fo(x,t) = {Fe(x, t) t € (¢TI

2. Using skip connection

fo(x,t) = Cskip(t)x + Cout (O Fg(x,t)

* Cskip(t), Coue (t) are differentiable functions such that cg;,(€) = 1, ¢y (€) = 0.



Inference Algorithm

 Single-step consistency sampling: X, = fo(x7,T)

* Multistep consistency sampling: Similar to DDIM sampling

Algorithm 1 Multistep Consistency Sampling

Input: Consistency model fg(,-), sequence of time
points 7y > 7o > --- > Txn_1, initial noise X
X < f@ (}%Tv T)
forn=1to N —1do
Sample z ~ N (0, I)
X, <« X+4/T2 — €z
X < f@(f{'rna Tn)
end for
Output: x

* In practice, they find time points with a ternary search to optimize the FID of samples obtained from Algorithm 1.
» Ternary search needs assumption that the objective is a unimodal function.
* FID is a unimodal function empirically in our experiments.



Training Consistency Models via Distillation

« Self-consistency objective: fg(x¢, t) = fo(x,,t") forall t,t' € [¢,T]
 How can we obtain ODE trajectories from ODE solver?

- Sampling all trajectory {x;},c[c 1 Of PF ODE is inefficient.

« To construct dataset, we sample x; in pure Gaussian noise, and denoising it until t = €.

* We will use datasets for obtaining ODE trajectories.

Noising with t

___——————
— -
-
-

Denoisingm‘

teacher model -

_______ (x:, x,r): Pair for self-consistency objective
ODE trajectory @e=_ ~ ~

X0

fo(xe,t) = fo(xy1,t)



Consistency Distillation

* Noising a sample x, with timestep t,,,: x; ..
» Find the sample on the same ODE trajectory utilizing pre-trained ODE solver ¢.

. 553; =X, — (tp — tn+1)tn+1s¢(xtn+1, tn+1) Denoising with pre-trained diffusion models

¢

tn

* Now, x, . ,Xx; are onthe same ODE trajectory.

« Definition 1. The consistency distillation loss is defined as

£10819) = e (0. ()

* 67:running average of the past values of 9, i.e., EMA of 0

d: metric function such as L1, L2, and LPIPS



Consistency Distillation

« We find that compared to simply setting 6~ = 8, the EMA update and “stopgrad” operator can
greatly stabilize the training process and improve the final performance of the consistency model.

* In alignment with the convention in deep reinforcement learning and momentum based contrastive
learning we refer to fg- as the “target network”, and fy as the “online network”.

Algorithm 2 Consistency Distillation (CD)

Input: dataset D, initial model parameter 8, learning rate
n, ODE solver ®(-,-; ¢), d(-,-), A(+), and p

0~ 90 What is the difference between

repeat
Sample x ~ Dandn ~ U[[1, N — 1] A
Sample x;, , ~ N(x;¢2 1) LEp(8,07;¢) =E [A(tn)d<f9(xtn+1, tni1), fo- (xd; ))]
)Acgi — Xty + (=t 1) ®(Xe, 05 tnr; @) LY, (6,07;¢) =E [ﬂ(tn)d (fe (xtnﬂ; n+1) £, (fd; ))]
L£(6,07;¢)

)\( ) (fe(xtn+17 n+1)af9 (Xt ) ))
0 —6—nVeLl(0,0”;0)
0~ «— stopgrad(u@~— + (1 — 1))
until convergence




Theorem 1.

 |If we reduce consistency distillation loss successfully, the difference between the original diffusion
models and the consistency models will be reduced.

Theorem 1. Let At := max,cpi v—1]{|tn+1 — tul}, and
f(-,; @) be the consistency function of the empirical PF
ODE in Eq. (3). Assume fg satisfies the Lipschitz condition:
there exists L > 0 such that for all t € [¢,T], x, and y,
we have ||fo(x,t) — fo(y,t)|y, < L|x—yl, Assume
further that for alln € [1, N — 1], the ODE solver called
at t, 1 has local error uniformly bounded by O((t,,+1 —

Remark:
« Since 6~ is a running average of the history of 8, we have
6~ = 6 when the optimization of Algorithm 2 converges.

tn)PtY) with p = 1. Then ifﬁgg(ﬂ 0; ¢) = 0, we have  Importantly, our boundary condition f,(x,€) = x precludes
the trivial solution fy (x, €) = 0 from arising in consistency
sup | fo(x,tn) — f(X,tn; @)[2 = O((AL)?). model training.
n,x

Proof. The proof is based on induction and parallels the
classic proof of global error bounds for numerical ODE
solvers (Siili & Mayers, 2003). We provide the full proof in
Appendix A.2. [
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Training Consistency Models in Isolation

 Distilling from unbiased PF ODE estimator:

Xy — X
t2

Viogpi(xt) = —E [

.

Algorithm 3 Consistency Training (CT)

Input: dataset D, initial model parameter @, learning rate
n, step schedule N(-), EMA decay rate schedule u(-),
d(-,-), and A(-)

0~ «—0@andk — 0

repeat Definition 2. The consistency training loss is defined as
Sample x ~ D, and n ~ U1, N(k) — 1]

Sample z ~ N0, 1) L8p(0,07;¢) = E[A(t)d(fo (x + tys12, tar1), fo- (x + tnz,ty))]
Atn)d(fo(x + tnt12,tni1), fo- (X + trhz, ty))
0 —0—-nVel(0,07)
0~ — stopgrad(pu(k)0~ + (1 — p(k))6)
k—k+1
until convergence
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Theorem 2.

» The consistency training loss is closely related to consistency distillation loss with the ground truth
score model ¢.

Theorem 2. Let At := max,ep1 n—1]{|tn+1 — tnl}. As-
sume d and fg- are both twice continuously differentiable
with bounded second derivatives, the weighting function
A(:) is bounded, and E[||Vlogp,, (x,)||3] < oo. As-
sume further that we use the Euler ODE solver, and the

pre-trained score model matches the ground truth, i.e., Remark:
Vte [e,T]: sp(x,t) = Vlogp,(x). Then, « L£N.(6,67) only depends on the online network f,, and the
LY (0,07 ¢) = £LN.(0,67) + o(At), 9) target network fy-, while being completely agnostic to
where the expectation is taken with respect 10 X ~ Dyara, N ~ diffusion model parameters ¢.
U1, N —1], and xy,,,, ~ N(x;t;. 1 I). The consistency « The loss function £Y-(6,67) = 0(At) decreases at a
training objective, denoted by L7(0,67), is defined as slower rate than the remainder o(At) and thus will
E[A(tn)d(fo(x + tni12,tni1), fo- (X + tnz,t,))], (10) dominate the loss in Eq. (9) as N — o and At — 0.

where z ~ N(0,1). Moreover, LN(0,07) = O(At) if
infy LY,(0,0~;¢) > 0.

Proof. The proof is based on Taylor series expansion and
properties of score functions (Lemma 1). A complete proof
is provided in Appendix A.3. ]
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Hyperparameter Search

» Metric functions, ODE solvers, and number of timesteps.

» Furthermore, they proposed “progressively increasing N”.

« When N is small (i.e., At is small), the consistency training loss has less “variance” but more “bias”
underlying consistency distillation loss.

« On the contrary, it has more “variance” but less “bias” when N is large.

60 10 - 10 60 g
'i - 1, — = LPIPS, Euler, N =50 —— LPIPS, Heun, N=9 1 CT (N =50, u=0.99)
50 | —t 2 LPIPS, Heun, N = 50 9 - LPIPS, Heun, N = 12 s0 —— CT (N =80,u=0.99)
\‘ e LPIPS 8 == LPIPS, Euler, N =80 8 = LPIPS, Heun, N=18 n ~= CT(N=120,u=0.99)
40 —— LPIPS, Heun, N = 80 —— LPIPS, Heun, N = 36 40 -3 CT (adaptive N and )
| 7 — =1 LPIPS, Euler, N =120 7 —— LPIPS, Heun, N = 60 1
Q30 || a g a] Q30 @
{ w A = |PIPS, Heun, N =120 w w \
6 \ 6 b
20 A 20 N
5 5 \"M = PO
10 e P B, . S i 4 10
0 3 3 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 20 40 60 80
Training iterations (x10000) Training iterations (x10000) Training iterations (x10000) Training iterations (x10000)
(a) Metric functions in CD. (b) Solvers and N in CD. (c) N with Heun solver in CD. (d) Adaptive N and p in CT.

Figure 3: Various factors that affect consistency distillation (CD) and consistency training (CT) on CIFAR-10. The best
configuration for CD is LPIPS, Heun ODE solver, and N = 18. Our adaptive schedule functions for N and p make CT
converge significantly faster than fixing them to be constants during the course of optimization.
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Comparison With Progressive Distillation

« CD and PD are thus far the only distillation approaches that do not construct synthetic data before
distillation.

« Using the LPIPS metric uniformly improves CD and PD compared to the squared L2 distance.

« CD uniformly outperforms PD across all datasets, sampling steps, and metric functions considered.

30

8.0 PD (L) L PD (L) PD (L) PD (L)
mmm PD (LPIPS) mmm PD (LPIPS) T2 mmm PD (LPIPS) msm PD (LPIPS)
6.0 CD (£2) 10 CD (£2) CD (£2) 20 CD (£2)
a mmm CD(LPIPS) A mmm CD(LPIPS) 10 mmm CD(LPIPS) A mmm CD (LPIPS)
4.0 T o i
5 10
0.0 0 0 0
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Number of sampling steps Number of sampling steps Number of sampling steps Number of sampling steps
(a) CIFAR-10 (b) ImageNet 64 x 64 (c) Bedroom 256 x 256 (d) Cat 256 x 256

Figure 4. Multistep image generation with consistency distillation (CD). CD outperforms progressive distillation (PD)
across all datasets and sampling steps. The only exception is single-step generation on Bedroom 256 x 256.
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Comparison With State-of-the-art Generation Methods

Table 1: Sample quality on CIFAR-10. *Methods that require Table 2: Sample quality on ImageNet 64 x 64, and LSUN

synthetic data construction for distillation. Bedroom & Cat 256 x 256. 'Distillation techniques.
METHOD NFE(]) FID(]) IS() METHOD NFE (]) FID(|) Prec.(f) Rec. (1)
Diffusion + Samplers ImageNet 64 x 64
DDIM (Song et al., 2020) 50 4.67 PD' (Salimans & Ho, 2022) 1 15.39 0.59 0.62
DDIM (Song et al., 2020) 20 6.84 DENO' (Zheng et al., 2022) 1 8.35
DDIM (Song et al., 2020) 10 8.23 cpt 1 6.20 0.68 0.63
DEM=solver-2 (Luietal.;2022) 10 5:54 PD' (Salimans & Ho, 2022) 2 8.95 0.63 0.65
DPM-solver-fast (Lu et al., 2022) 10 4.70 t 2 H H
oo oD 2 AW 6 o * NFE: Neural Function Evaluations
3-DELS!(Zhang & Chen; 2022) 10 AT ADM (Dhariwal & Nichol, 2021) 250 2.07 074 0.63 :
Diffusion + Distillation EDM (Karras et al., 2022) 79 2.44 0.71 0.67 H H
Knowledge Distillation* (Luhman & Luhman, 2021) 1 9.36 BigGAN-deep (Brock et al., 2019) 1 4.06 0.79 0.48 i P D and C D d IStI II the Same E D M mode IS .
DFNO* (Zheng et al., 2022) 1 4.12 CT 1 13.0 0.71 0.47
1-Rectified Flow (+distill)* (Liu et al., 2022) 1 6.18 9.08 CT 2 11.1 0.69 0.56 Rem ar k
2-Rectified Flow (+distill)* (Liu et al., 2022) 1 485 9.0l ot T
3-Rectified Flow (+distill)* (Liu et al., 2022) 1 521 879 - soroom R x 2 P .
PD (Salimans & Ho, 2022) 1 834 8.69 PD' (Salimans & Ho, 2022) ! 1692 047 027 e CT Outperforms existi ng sing |e—Step, non-
D ) 355 948 PD' (Salimans & Ho, 2022) 2 8.47 0.56 0.39
PD (Salimans & Ho, 2022) 2 558 905 cp! 1 7.80 0.66 0.34 adversarial generative models
CcD 2 293 975 CD' 2 5.22 0.68 0.39
Direct Generation DDPM (Ho et al., 2020) 1000 4.89 0.60 0.45 . .
BigGAN (Brock et al., 2019) 1 14.7 9.22 ADM (Dhariwal & Nichol, 2021) 1000 1.90 0.66 0.51 * CT aCh |eveS Com parable q Ual Ity tO One'
Diffusion GAN (Xiao et al., 2022) 1 14.6 8.93 EDM (Karras et al., 2022) 79 3.57 0.66 0.45 . .
AutoGAN (Gong et al., 2019) 1 124 855 PGGAN (Karras et al., 2018) 1 8.34 step samp|es from PD without re|y|ng on
E2GAN (Tian et al., 2020) 1 113 851 PG-SWGAN (Wu et al., 2019) 1 8.0
VITGAN (Lee et al., 2021) 1 6.66  9.30 TDPM (GAN) (Zheng et al., 2023) 1 5.24 s :
TransGAN (Jiang et al., 2021) 1 9.26 9.05 StyleGAN2 (Karras et al., 2020) 1 235 0.59 0.48 d IStI "atl on.
StyleGAN2-ADA (Karras et al., 2020) 1 292 983 cT 1 16.0 0.60 0.17 . . .
StyleGAN-XL (Sauer et al.. 2022) L s ~cr > 785 08 03 * CD is better than CT though CT is trained
Score SDE (Song et al., 2021) 2000 2.20 9.89 LSUN Cat 256 x 256
DDPM (Ho et al., 2020) 1000 317 946 E Dl . “ : ”
e e o PD' (Salimans & Ho, 2022) T 36 051 05 with “unbiased” ground truth score model.
PFGM (Xu et al., 2022) 110 235 968 PD' (Salimans & Ho, 2022) 2 15.5 0.59 0.36
EDM (Karras et al., 2022) 35 204 984 cp' 1 11.0 0.65 0.36
1-Rectified Flow (Liu et al., 2022) 1 378 113 cp! 2 8.84 0.66 0.40
Glow (Kingma & Dhariwal, 2018) 1 48.9 3.92 DDPM (Ho et al., 2020) 1000 17.1 0.53 048
Residual Flow (Chen et al., 2019) 1 46.4 ADM (Dhariwal & Nichol, 2021) 1000 557 0.63 0.52
GLFlow (Xiao et al., 2019) 1 44.6 EDM (Karras et al., 2022) 79 6.69 0.70 0.43
DenseFlow (Grcié et al., 2021) 1 349 PGGAN (Karras et al., 2018) 1 375
DC-VAE (Parmar et al., 2021) 1 17.9 8.20 StyleGAN2 (Karras et al., 2020) 1 7.25 0.58 0.43
CT 1 870 849 cT 1 20.7 0.56 0.23
CT 2 583 885 CcT 2 1.7 0.63 0.36
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Qualitative Results

» Comparison between EDM, CT (1 step), and CT (2 step)

» All samples obtained from the same initial noise vector share significant structural similarity, even
though CT and EDM models are trained independently from one another.

» This indicates that CT is less likely to suffer from mode collapse, as EDMs do not.

Figure 5: Samples generated by EDM (rop), CT + single-step generation (middle), and CT + 2-step generation (Bottom). All
corresponding images are generated from the same initial noise.
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Zero-shot Image Editing

» Consistency models with multi-step sampling enable zero-shot image editing as diffusion models.

(a) Left: The gray-scale image. Middle: Colorized images. Right: The ground-truth image.

e

g
ey

(c) Left: A stroke input provided by users. Right: Stroke-guided image generation.

Figure 6: Zero-shot image editing with a consistency model trained by consistency distillation on LSUN Bedroom 256 x 256.
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Subsequent Study: BOOT

« BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping

« BOOT can distill large-scale diffusion models DeepFloyd IF similar to Stable Diffusion

e Project page, hugqging face studio

2

student

(X(), 0) (xtv t) (xt’v t’) (xT7 T)

( M’t) L L % B Tty t h R
go(x7,0) e vo(€, t) | : o f¢(33t7t

. . . . Figure 3: Training pipeline of BOOT. s and ¢ are two consecutive timesteps where s < t. From a
Figure 2: Comparison of Consistency MOd_el (S,OHg noise map e, the objective of BOOT minimizes the difference between the output of a student model
et al., 2023) (r ed T) anfi BOOT (black |) highlight- at timestep s, and the output of stacking the same student model and a teacher model at an earlier
ing the opposing prediction pathways. time ¢. The whole process is data-free.

Gu, Jiatao, et al. "BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping.” arXiv. 2023. 19


https://deepfloyd.ai/deepfloyd-if
https://huggingface.co/spaces/DeepFloyd/IF

BOOT: Data-free Distillation of Denoising
Diffusion Models with Bootstrapping

Jiatao Gu et al.
Apple, University of Pennsylvania
arxiv

Presented by Minho Park



Motivation

« Random samples in 256x256 from our single-step student models distilled from DeepFloyd [F with

prompts from diffusiondb.

—i
(Q\]



https://deepfloyd.ai/deepfloyd-if
https://poloclub.github.io/diffusiondb/

Motivation

First, prepare to run BOOT
Demo of BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Image Generation given text prompts. The student model distilled from DeepFloyd IF-I-L in 64x64 resolution.

prompt

Flag

show path

interpolation

Clear Submit
prompt nrow
impasto, avatar, illustration, girl with red hair, slightly curly hair, European and American, freckles, jane’s style, trends on artstation, crazy colors, light and shadow contrast, high detail 8
Papillon dog puppy in the style of pencil drawing, fantasy art, enigmatic, mysterious. 8
Araccoon wearing a space suit, wearing a helmet. Oil painting in the style of Rembrandt ]
A portrait of Einstein, style art, award winning quality, high detail 8
8

An intricate forest painting, full of exotic plants and flowers, Arianna Caroli

ncol

mode

BOOT

BOOT

BOOT

BOOT

B0OOT

show path
false
false
false
false

false

seed

84

Now, we show more results of BOOT

Demo of BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Image Generation given text prompts. The student model distilled from DeepFloyd IF-1-L in 64x64 resolution.

A raccoon wearing a space suit, wearing a helmet. Ol painting in the style of Rembrandt

BOOT

show path

84
interpolation

Clear Submit

prompt
impasto, avatar, illustration, girl with red hair, slightly curly hair, European and American, freckles, jane’s style, trends on artstation, crazy colors, light and shadow contrast, high detail.
Papillon dog puppy in the style of pencil drawing, fantasy art, enigmatic, mysterious.
A raccoon wearing a space suit, wearing a helmet. Oil painting in the style of Rembrandt
A portrait of Einstein, style art, award winning quality, high detail

An intricate forest painting, full of exotic plants and flowers, Arianna Caroli.

nrow  ncol
8 6
8 6
8 6
8 6
8 6

mode
BOOT
80OT
BOOT
BOOT

BOOT
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show path

false
false
false

false

false

seed

84



Knowledge Distillation of DDPM

- DDPMZ W2 A == S 7HX| BHH: 1) ODE-solver &, 2) distillation-based methods
« ODE-solver: DDIM, PLMS, etc.

« Distillation-based: Progressive distillation, Consistency models, and BOOT

« Comparison with Consistency Models

Daa - » - A . Algorithm 2 Consistency Distillation (CD) Algorithm 3 Consistency Training (CT)
Input: dataset D, initial model parameter @, learning rate Input: dataset D, initial model parameter @, learning rate
71, ODE solver @(-,-; ¢), d(-,-), A(-), and p n, step schedule N(-), EMA decay rate schedule p(-),
6~ — 86 d(-,-), and A(-)
repeat 0 —@andk — 0
Sample x ~ Dandn ~ U[1, N — 1] repeat
Sample x;, ,, ~ N(x;t2. 1) Sample x ~ D, and n ~ U[1, N(k) — 1]
)A(f:l — Xt T (t'n - tn+1)¢(xtn+1 stnt1; ¢‘) ial;lp;e_z -~ N(D’ I)
L(6,07;¢) — (Aét )f)i((;( +t tni1), fo- (X + 12, 15))
. n elX n+1Z,ln+1), Jo— X né,ln
Atn)d(fo(Xe,. s tns1), fo- (X7 tn)) 00— nVeLl(0,07)
Figure 2: Comparison of Consistency Model (Song g_‘_ o N ”Vf’g(f’f__? ‘?5)1 0 g_ ‘_k Stofgmd(#(k]g_ + (1 — pu(k))0)
et al., 2023) (red 1) and BOOT (black |) highlight- -« stopgrad(u6” + (1 — 1)6) K+
until convergence until convergence

ing the opposing prediction pathways.

23
Song, Yang, et al. "Consistency models." ICML. 2023.



Direct Distillation vs. Consistency Models

- Direct distillation: (Noise, Generated image pair)E 0| &35} student model= &&= &
ODE-solverE Z7tX| S1tA|7A pairE ¥ 0{0f StE £ ot step ot& =0 50 steps= S21HA|7{0F 2.

LR = Ecrx(0.1)|90(€) — ODE-Solver(fy,e, T — 0)|

- Consistency models: 50 steps2| ODE-solverg X|Lt7| & &7| IfZ0], oF 2H 2| ODE-solverTt 7
(@) OI‘A

K| 11 bootstrap fashion2 Z self-consistent objectiveE 2 0{F0{ M student model=2 S A|Z.

ESM — Emtwq(mt|m),s,t~[0,T],s<t”99 (mta t) — Go- (',I’.S? 8) ||g

- #~: self-consistency objective 0| ] == 0| &/} = EMA teacher.

- S}X| 2k consistency models2 &5 | A3 E HIO|EHE B R & ol=|, text-to-image?| 2%
billions?| (private ¥ +&x =) HIO|E{7} H RSB E distillation &&0| & SLC}.
» otg Al AX| ERTE 2 HIO|H 2 distillations Tl 5tHH suboptimal distillation performanceS 'tCF1 2.
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Method: Single-ODE
™S 4SS A

- Direct distillation2| data-free, Consistency models2| 2= training time2| &2 dgot A

« LAl BOOTE consistency models2t CFE A 24 noise e= Y H O 2 BH= D EIO|C}

* le., go(et) = x, = ODE — Solver(f,, e, T — t). The final sample can be obtained as gg(€, 0) ~ x,.

« O], gg(e,t) = x, 2 5 SESt= A2 x,= noisy ot imageO| 22 st& =& O HL,
o OHM plx 02 BEO uy =y, = (x; — 0,6) Ja, & | FSI=E S}HAL
- Boundary condition: y, = x,, yr =? = O|% T & boundary condition lossE 7|55

- X Xt=2 low frequency “signal” component of x, 211 £ 2L},



Method: Single-ODE

« DDIM sampling (s < t)

A

X0

xs = (0s/01) Tt + (s — 405 /0¢) fo(@4, 1)

L—

- Reparameterization with y and A, = —log(a,/o;). O| Wl A, = “negative half log-SNR

ys = (L= eM7%) folae,t) + e My,

- Continuous version for objective function: (s — t2| =2 F 0 A lim ... StH &)
S—

d
o = N fel@nt) — y)

Il

2|

[ I
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Method: Learning with Bootstrapping

o : - oty| o]} JLTg olojo
- Objective function: Collapsing= 27| #]2t EMAZt 28 SIS,

Teacher ¢ 7} O] X}I| non-zero outputS 7| 2. yr Z 0] CH2F boundary condition loss
2
w .
L8> = Ecun(0.1),t~[5,7] 5—; Yo(€. 5) — SG |yg(e. 1) + 0N, ((fo(@e. 1) —[yole. )) L3¢ = Een(0,1) [quzs( tmax) — Yo(€, tmaX)H%}
incremental improvement 9

Loss

>

student

student teacher

Figure 3: Training pipeline of BOOT. s and ¢ are two consecutive timesteps where s < ¢. From a
noise map €, the objective of BOOT minimizes the difference between the output of a student model

at timestep s, and the output of stacking the same student model and a teacher model at an earlier

time ¢. The whole process is data-free. 57



Method: Error Accumu

lation
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MEE I, 0|$ ISR Ot 20| BYYS|X = 2R|7} ot

« y7t large tOf CHSHA £ 25 teacher modelO| out-of-distribution inputS 2HA| E| 11 0|F &t&0| &0t
&

JoliAl= =M 7F g

« 0|2 57| ?IShM = 71X &8
O
s

1. RE2= XBHLE ¢t =09 Y ZL20| - =75+, DDPMe S5 M HH ¢t =0,..,TE
uniform StA| samplingdtd] &= ZIHSI U=

2. Bootstrappingot= targetl| Z1tEM 42| =42 15t order methodO| X[ 2t & X| 2= higher-order

-

solver@l Heun’s method 5= AFE9I 2. (Heun’s method: 2" order method)



Method: Learning with Bootstrapping

-

t_max +=0.95 +=0.90 1=0.85 t=0.80 1=0.75 t=0.16 t_min

DDIM

Denoised

Signal
ODE

BOOT
Distilled

9+

Noisy
Input

f(;,: diffusion model teacher (multi-step generation)
Y: distilled student model (single-step generation)

Figure 4: Comparison between the generated outputs of DDIM/Signal-ODE and our distilled model
given the same prompt A raccoon wearing a space suit, wearing a helmet. Qil painting in the style of
Rembrandt and initial noise input. By definition, signal-ODE converges to the same final sample as
the original DDIM, while the distilled single-step model does not necessarily follow.
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Method: Limitation

- Consistency models2 0] ™ 0| multi-step inferenceE X| & 5t= HHHO| BOOTE= o O| A multi-step
inferenceS X|ASIX| Z=Ct. &, multi-step inference =0l GANO|AM & == 8! 11 DiffusionO| M= &
= QE HHEESO0| F7tsSi ML

« Zero-shot inpainting 50| 27t5%.
« Classifier-free guidancet €7ts%&.
- Distillation with guidance: Test-time0i| guidanceE FX| £5t7| |20 guidanceE O|2| LH|F1
distillation= TS} OF SFLf.
« Negative promptE 18l & OF &,

i~

f(rt,(&'}t,t,(?) — ffi?(mf:t:n) T W - (-ffl’?(mtatac) - ffi)(mﬁ?tvn))



Quantitative Results

Steps FFHQ 64 x 64 LSUN 256 x 256 ImageNet 64 x 64
PS> FID/Prec./Rec. fps FID/Prec./Rec. fps FID/Prec./Rec. fps

DDPM 250 54/70.80/054 0.2 8.2/0.5570.43 0.1 11.0/0.67/0.58 0.1

50 76/0.79/048 1.2 135/047/040 06 13.7/0.65/0.56 0.6

DDIM 10 18.3/70.78/0.27 53 31.0/0.27/0.32 3.1 18.3/0.60/0.49 33
| 22570.10/70.00 54 308 /0.00/0.00 31 23770.0570.00 34

Ours | 9.0/0.79/0.38 54 23.4/0.38/0.29 32 16.3/0.68/0.36 34

Table 1: Comparison for image generation benchmarks on FFHQ, LSUN and class-conditioned
ImageNet. For ImageNet, numbers are reported without using CFG (w = 1).
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Qualitative Results

DDIM 8 Steps (16 NFEs) DDIM 4 Steps (8 NFEs) DDIM 1 Step (2 NFEs) BOOT 1 Step (1 NFE, Durs)

Figure 6: Uncurated samples of {50, 10, 1} DDIM sampling steps and the proposed BOOT from
SD2.1-base, given the same set of initial noise input and prompts sampled from diffusiondb.
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Qualitative Results
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Figure 7: The distilled student is able to trade generation quality with diversity based on CFG weights.
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Ablation Studies

t=0.99 t=0.92 = 0.92

t = 0.85 0.7 t=0.1 __t=0.99 085 0.7 _t=0.1

%l ‘ @ 7

(c) Progressive Time Training (d) Uniform Time Training

Figure 8: Ablation Study. (a) vs. (b): The additional boundary loss in § 3.2 alleviates the mode
collapsing issue and prompts diversity in generation. (c) vs. (d): Uniform time training yields better
generation compared with progressive time training.
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Latent Space Interpolation

. GANI} Cf B8 57| H20] GANOIA ZHE S A
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Figure 9: Latent space interpolation of the student model distilled from the IF teacher. We randomly
sample two noises to generate images (shown in red boxes) given the same text prompts, and then
linearly interpolate the noises to synthesize images shown in the middle.
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Fixed Noise Input

. GANI} O B8 7| 20| GANOIA 3B 2MES & 4 912 # 28,

==

Figure 10: With fixed noise, we can perform controllable generation by swapping the keywords from
the prompts. The prompts are chosen from the combination of portrait of a {owl, raccoon, tiger, fox,
llama, gorilla, panda} wearing { a t-shirt, a jacket, glasses, a crown} { drinking a latte, eating a
pizza, reading a book, holding a cake} cinematic, hdr. All images are generated from the student
distilled from IF teacher given the same noise input.
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